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1 Introduction

This chapter will very briefly introduce and review some computational

experiments in using trainable gene regulation network models to simulate and

understand selected episodes in the development of the fruit fly, Drosophila

melanogaster. For details the reader is referred to the papers introduced below. It

will then introduce a new gene regulation network model which can describe

promoter-level substructure in gene regulation.

As described in chapter 2, gene regulation may be thought of as a combination of

cis-acting regulation by the extended promoter of a gene (including all



regulatory sequences)by way of the transcription complex, and of trans-acting

regulation by the transcription factor products of other genes. If we simplify the

cis-action by using a phenomenological model which can be tuned to data, such

as a unit or other small portion of an artificial neural network, then the full trans-

acting interaction between multiple genesduring development can be modelled

as a larger network which can again be tuned or trained to data. The larger

network will in general need to have recurrent (feedback) connections since at

least some real gene regulation networks do. This is the basic modeling

approach taken in (Mjolsnesset al. 1991),which describeshow a set of recurrent

neural networks can be used as a modeling language for multiple developmental

processesincluding gene regulation within a single cell, cell-cell communication,

and ceil division. Such network models have been called "gene circuits", "gene

regulation networks", or "genetic regulatory networks", sometimes without

distinguishing the models from the actual modeled systems.

In (Mjolsness et al. 1991) a number of choices were made in formulating the

trainable gene regulation network models, which affect the spatial and temporal

scales at which the models are likely to be useful.

operate deterministically and continuously in

The dynamics was chosen to

time, on continuous-valued

concentration-like variables, so that the dynamical equations for the network are

coupled systems of ordinary differential equations (ODE's). One such form was



= g +h,

in which v, is the continuous-valued state variable for gene product i, T,j is the

matrix of positive, zero, or negative connections by which one transcription

factor can enhance or repress another, and gO is a nonlinear monotonic sigmoidal

activation function. When a particular matrix entry _j is nonzero, there is a

regulatory "connection" from gene product j to gene i. The regulation is

enhancing if T is positive and repressing if it is negative. If T,j is zero there is no

connection. Figure 1 sketches the model, drawing a few representative nonzero

connections as arrows between "genes" represented by open circles. The entire

network is localized to a cell but communicates with other such networks in

nearby cells.

[Figure I goes here.]

Such equations are often stiff due to the nonlinear transfer function g(u).

Optimizing the unknown parameters T, _, and _ has so far proven to be

computationally difficult: special versions of simulated annealing optimization

(Lam and Delosme 1988a, 1988b) have been required for good results, e.g. to start

from expression patterns derived from a known model and recover its

parameters reliably (Reinitz and Sharp 1995). As discussed in Chapter 2, this

kind of training is quite different and much slower than the usual



"backpropation of error" training used with feed-forward (nonrecurrent)

artificial neural networks. Informatics work on improving this situation could be

important.

In addition to the analog circuit model, the framework of (Mjolsness et al. 1991)

also proposes a dynamic grammar by which multiple biological mechanisms can

be modeled by networks and then combined into a consistent overall dynamical

model. The grammar/circuit combination has some similarities to hybrid

models incorporating Discrete Event Systems and ODE's. In this way one can for

example combine intracellular and intercellular regulation network submodels.

The grammar is also suitable for implementation in object-oriented computer

simulation programs.

2. Three Case Studies

In this section, some of the literature on trainable gene circuit models which have

been fit to Drosophila gene expression patterns is reviewed. Three applications to

pattern formation are shown to demonstrate the generality of the methods. First,

a model of gap gene expression patterns along the anterior-posterior axis will be

described. Second, the extension of this model to incorporate the important pair-

rule gene eve and a number of other improvements will be introduced. Finally, a



gene circuit model of neurogenesis incorporating nonlinear signaling between

nearby cells through the Notch receptor and the Delta ligand will be briefly

described.



2.1 Gap Gene Expression

Such gene regulation network models can be tuned or "trained" with real gene

expression data, and then used to make robust and at least qualitatively correct

experimental predictions, as was shown in (Reinitz et al. 1992). In that study the

goal was to understand the network of gap genes expressed in bands (domains)

along the anterior-posterior (A-P) axis of the very early embryo (the syncytiaI

blastoderm) of Drosophila. This experimental system has the advantage that there

are no cell membranes between adjacent cell nuclei, so elaborate cell-cell

signalling mechanisms do not need to be modeled. Also Drosophila is an easy

species to manipulate genetically, as for example "saturation mutagenesis" -

finding all the genes affecting a particular process - is possible.

Positional information along the A-P axis of the syncytial blastoderm is encoded

in a succession of different ways during development. At first the main

encoding is a roughly exponential gradient of bicoid (bcd) protein imposed by the

mother fly, along with maternal hunchback (hb) expression. These provide gene

regulation network inputs to the gap genes: Kruppel (Kr), knirps (kni), giant (gt),

tailless (tll), and hunchback (hb) again. These each establish one or two broad

domains of expression along the A-P axis. The gap genes then serve as network

inputs to the pair-rule genes including even-skipped (eve) and fushi tarazu (ritz),

which establish narrow, precise stripes of expression and precise positional



coding. These in turn provide input to segment-polarity genessuch as engrailed

and wingless which are the first to retain their expression pattern into adulthood.

For example, engrailed is expressed in bands just one cell wide which define the

anterior borders of the parasegments. Introductions to the relevant Drosophila

developmental biology may be found in (Lawrence 1992) and (Alberts et al.

1994).

An example of a spatial gene expression pattern along the A-P axis of a triple-

stained embryo is shown in Figure 2. Here, fluorescently labelled antibodies

simultaneously label those nuclei in the syncytial blastoderm expressing Kruppel,

giant, and even-skipped.

[Figure 2 goes here.]

The first computer experiments with fitting such analog gene regulation nets to

real expression data concerned the establishment of the broad gap gene domains

(excluding the extreme ends of the A-P axis) from maternally supplied initial

conditions, by a gene regulation network in which all gap genes interact with all

others and bcd provides input to, but does not receive any input from, the gap

genes.



Figure 3 shows the experimentally observed and model-fitted curves for gap

gene expression. They are in qualitative agreement, which is the most that can

be expected from the expression data that was available at the time. The extra

dip in gt expression could not be predicted by the model, which can be

interpreted as an indication of the role of circuit components not included in the

model.

[Figure 3 goes here.]

The most important predictions of the model concerned the anomalous dose-

response observed by (Driever and Nusslein-Volhard 1988). Figure 4 shows the

prediction in detail; it may be summarized by saying that positional information

for the gap gene system is specified cooperatively by maternal bcd and hb. This

qualitative behavior was observed to be robust over many runs of the simulated

annealing parameter-fitting procedure, and therefore taken to be a prediction of

the model. Essential features of the cooperative control of positional information

by maternal bcd and hb were verified experimentally in (Simpson-Brose et al.

'1994). The gap gene model prediction and the experiment ocurred

independently of one another.

[Figure 4 goes here.]



2.2 Eve Stripe Expression

Following the gap gene computer experiments, (Reinitz and Sharp 1995) went on

to perform a detailed study of the gap gene circuit as extended to include the

first of the pair-rule genes, eve. The further observations which could be

included in this model allowed an important milestone to be reached: not only

qualitative behaviors, but also the circuit parameter signs and rough magnitudes

became reproducible from one optimization run to another, and some

parameters such as connections to eve were still more reproducible. Hence, far

more could be predicted. For example the diffusion constant for eve was much

lower than for other transcription factors in successful runs. This has an

experimental interpretation: eve mRNA is expressed in the outer part of each

future cell just as the cell membranes are invaginating into the blastoderm

embryo, providing an apical obstruction to diffusion.

More importantly, each of the eight boundaries of the four central stripes of eve

expression could be assigned a particular gap gene as the essential controller of

that boundary. This picture is in agreement with experimental results with the

possible exception of the posterior border of eve stripe 3, the interpretation of

which is an interesting point of disagreement (Small et al. 1996, Reinitz and



Sharp 1995, Frasch and Levine 1987) and a possible focal point for further

laboratory and/or computer experiments.

Further experimental understanding of the gap genes' influence on eve

expression is obtained in (Reinitz et al. 1998), where it is shown that the fact that

eve is unregulated by other pair-rule genes can be understood by the phase of its

periodic spatial pattern: no other phase offset pattern of pair-rule expression (e.g.

the phase-shifted patterns of hairy orfushi-tarazu) can be produced from gap gene

input alone.

[Figure 5 goes here.]

Related work on modeling the gap gene and eve system of A-P axis positional

information in Drosophila includes (Hamahashi and Kitano 1998).

2.3 Neurogenesis and Cell-Cell Signaling

The syncytial blastoderm is very favorable, but also very unusual, as

morphogenetic systems go because there is no cell membrane interposed

between nearby cell nuclei and therefore the elaborate mechanisms of cell-cell

signaling do not come into play. But if we are to model development in its

generality it is essential to include signaling along with gene regulation



networks. As a first attempt in this direction, we have modeled the selection of

particular cells in an epithelial sheet (later in Drosophila development) to become

neuroblasts. Virtually the same gene network is thought to be involved in the

selection of particular cells in wing imaginal disks to be sensor organ precursors.

The essential molecule to add is the Notch receptor, a membrane-bound receptor

protein responsible for receiving the intercellular signals which mediate this

selection process. It binds to a ligand molecule ("Delta" for this system) on

neighboring cells. Recent experiments (Schroeter et al. 1998) indicate that it acts

on the nucleus (following activation by a ligand on another cell) by having an

intracellular domain cleaved off and transported there. Variants of the Notch

receptor occur in many developmental subsystems where a subpopulation of

cells must be picked out, in Drosophila and homologously across many species.

In (Marnellos 1997) and (Marnellos and Mjolsness 1998a, 1998b) are reported

computer experiments incorporating both intracellular and intercellular

components in a gene regulation network model of neurogenesis. A minimal

gene circuit model with lateral inhibition (such as depicted in Figure 6) was not

quite sufficient to produce the observed patterns of selection robustly.

Incorporating a denser intracellular connection matrix and/or the dynamic

effects of delamination on the geometry of cell/cell contact area produced better

results. However, the "data" to which the fits were made was highly abstracted

from real gene expression data so it is premature to draw a unique biological



hypothesis from the model. Figure 7 shows the resulting model behavior in the

caseof denseinterconnections.

[Figure 6 goes here.]

Related work on Notch-mediated signaling in Drosophila developmental models

includes the appearance of Notch and Delta in the ommatidia model of

(Morohashi and Kitano 1998).

[Figure 7 goes here.]

3 Extending the Modeling Framework to Include Promoter Substructure

A very important scientific problem is to understand the influence of promoter

substructure on eve stripe formation. The eve promoter has many transcription

factor binding sites, some of which are grouped more or less tightly into

promoter elements such as the stripe 2 "minimal stripe element" (MSE 2) (Small

et al. 1992), or a similar less tightly clustered element for stripes 3 and 7 (Small et

al. 1996). As an example of the scientific problems that are raised, if is hb an

enhancer for MSE 2 but an inhibitor for MSE 3, what is its net effect on eve and

can it change sign (Reinitz et al. 1998)? And how are we to understand the action

of "silencer" elements such as the one apparently responsible for long-range



repression of zen by dorsal (Gray et al. 1995)? Such questions point to the need

for at least one additional level of complication in the phenomenological models

of gene networks whose application is described above, to describe the

substructure of promoters: binding sites, their interactions, and promoter

elements. Otherwise the relevant experiments cannot even be described, let

alone predicted, with network models.

In (SmaIl et al. 1992) an informai model for activation of MSE 2 is suggested: it is

activated by bcd and hb "in concert", and repressed by gt anteriorly and Kr

posteriorly. A simple "analog logic" expression for the activation of MSE 2 in

terms of variables taking values in [0,1] might then be (GRN 1998):

UMse2 = (bcd + y x hb)(1- gt)(1- Kr)

_ = g(u_s_,)

where _ is a weight on the relative contribution of hb vs bcd. A similar simplified

formula for the model of (Small et al. 1996, figure 8) for MSE 3 could be for

example:

UMse3= Dstat(1-hb)(1-kni)

v_,, = g(u_,_)



(We omit direct activation of MSE3 by tailless (tll) since tll represses kni (Pankratz

et al. 1989) which represses MSE3.) The rate of eve transcription would be

approximated by a further analog logic formula including a weighted "or" of the

MSE activations VMS_2and VMS_3.

The validation or invalidation of such formulae and their interpretation in terms

of more detailed models will require a quantitative treatement of the relevant

expression data which is not yet available.

parameters in quantitative network models

within a gene regulation network.

It may also lead to fitting the

of promoter-level substructure

3.1 An Example: Hierarchical Cooperative Activation

As an example of such a gene network model incorporating promoter level

substructure, I introduce here a "Hierarchical Cooperative Activation" (HCA)

model for the degree of activation of a transcription complex. It at least seems

more descriptive of known mechanisms than a previous attempt to derive

phenomenological recurrent neural network equations as an approximation to

gene regulation dynamics (Mjolsness et al. 1991). An earlier suggestion for

including promoter-level substructure in gene regulation networks is described

in (Sharp et al. 1993). The present HCA model is more detailed but has not been



fit to any experimental data yet and is therefore quite speculative: perhaps a next

stageof successfulmodeling will include someof the following ingredients.

The basic idea of the model is to use an equilibrium statistical mechanics model

(complete with partition functions valid for dilute solutions (Hill 1985)) of

"cooperative activation" in activating a protein complex. Such a model can be

constructed from the following partition function, which is essentially the

Monod-Wyman-Changeux (MWC) model for a concerted state change among

subunits (Hill 1995):

z=KFI< +K:.,) +Fl(i+
b b

in which the probability of activation of some complex is determined by relative

binding constants for each component b of the complex in the active and inactive

states, but there are no other interactions. As before, vj represents the

concentration of gene product j of a gene circuit. In this formula, j is a function

of b so that each binding site is specialized to receive only one particular

transcription factor. To remove this assumption one could write instead

Z= KH(1 + 2 Ab_Kbiv,)+ _(1 + Z AbiKbiv,)
b j b j

where A = 0 or I specifies which transcription factors may bind to which sites by

its sparse nonzero elements. For either expression, K is the relevant binding



constant for a binding site when the complex is in its "active" state and /( is the

binding constant when the complex is inactive.

For this partition function, given a global active or inactive state, all binding sites

are independent of one another. For example the components could be the

occupants of all the binding sites b within a particular regulatory region of a

eukaryotic promoter. This conditional independence leads to the products over

the binding sites in the expression for Z. There are two such products because

there is one additional bit of global state which can be "active" or "inactive".

For this model the probability of activation of the complex under consideration

can be calculated and it is:

so (if Kv << 1)

Ku

P = g(u) =
l+ Ku

1 + Kbvj{b)

u=l+___.(Kb-Kb)v.i,b,.
b

(Further simplifications result if the binding constants K_ specific for a given

transcription factor j(b) are all roughly equal to a common value Kj. The final

line above suggests a neural-network like approximation for u, although in that



regime g could be linearized also.) We will use this model as a building block to

construct a more detailed one.

Given the MWC-style model of "cooperative activation", we'd like to use it

hierarchically: to describe the activation of promoter "modules" or "elements" in

terms of transcription factor concentrations, and then again to describe the

activation of the whole transcription complex in terms of the "concentrations" of

active promoter elements, which are proportional to their activities. An

additional wrinkle is to allow either monomeric or homodimeric transcription

factor binding. (Heterodimers will be introduced with appropriate notation

later.) The resulting bare-bones hierarchical model would replace the neural-net

activation dynamics

z. dvi = [transcribing], - Xivi
' dt

[transcribing] i = g(ui)

u,=  r,#j
i

with the two-level model

dv i

zi _ = [transcribing]i - Aivi

[transcribing]i = g(ui) = Jui
1 + Ju_

Ui = -_
1 + J_P_



(the product is taken over enhancer elements which regulate genei) and

1+ k,_8,,

1 + ..bVi(b)

u_ = I-I -[+.. ^ .( )b
bea Ab Vj(b)

Here n(b)=l for monomers and 2 for homodimers. Note that for this simple feed-

forward version of the model, the parameters Kb and /_b are related to

observables

Kb n(b) _ . n(b)
Vj(b) _ "_bVj(b)

f_ = 1 + "_bvJ(b) J,:a,= 1 + ._bvj(b)]_" . n(b) _ . n(b)

where f_ is the probability that site b _u is occupied if _ is active, and 97_, is the

probability that site b is occupied if _ is inactive. In principle these quantities

could be observed by in vivo footprinting. Such observations could be used to

evaluate the parameters K b to use in the first expression for u_ for arbitrary

inputs v_.

If we are modeling a network rather than a single gene, then some of the

quantities listed above require an additional i index.



We have the opportunity to include a few more important biological mechanisms

at this point. One is the possibility that, as in the Endo16 model of (Yuh et al. 98),

the hierarchy could go much deeper than two levels - especially if transcription

complex formation is a sequential process. Another significant mechanism is

competitive binding within a promoter element. This could arise if several

transcription factors bind to a single site, as we have formulated earlier, or if

binding at one site eliminates the possibility of binding at a nearby site and vice

versa. In this case the 4-term product of two 2-term binding-site partition

functions is replaced with one three-term function by excluding the

configuration in which both competing sites areoccupied:

Zb_, =(1 + _. Ab;Khi vj + E Ab.kgbt v , )
J k

2bh. = (1 + E Ab,_v, + E Ab'k4,Vk)
j k

(where again A = 0 or I describes which transcription factors bind to which sites

by its sparse nonzero elements) with corresponding modifications to the update

equations. Also homodimeric and heterodimeric transcription factor binding are

easy to accommodate with appropriate concentration products in more general

one-site and two-site partition functions:



) jk

1 jk

Z,2) =(1 + Z at,,K_,,v, + Z ab,kKb,l,V,Vk + Z Ab,,Kb.,vt + Z Ao.,,,.Kb.,,..v,v,.)bb"

j jk lm Im

Zh'') (I + Z At,,Kb, v, + Z Ab,kKb,kV,Vl, + Z Ab,tlfb'tV, + Z Ab,t,,,Kb,t,,,VtV,,,)b" -"

j jk lm Im

Transcription factor trimers and higher order subcomplexes at adjacent binding

sites could be described by suitable generalizations of these expressions, at the

cost of introducing more parameters.

Similarly, constitutive transcription factor binding with activation by

phosphorylation or dephosphorylation can be described with minor

modifications of the appropriate one-site or two-site partition functions. For

example one could use Michaelis-Menton kinetics in steady-state for

phosphorylation and dephosphorylation, and the one-site dimeric partition

functions would become

e#
Z_')= (1 + Z AbJk,tmK_kvjvkxt/(X, + Ym))

R

^ e#

jk

where x t is proportional to the concentration of a kinase for the bound j/k dimer

(with proportionality constants depending on the catalytic reaction rates) and y,



is proportional to a corresponding phosphatase concentration.

so that the extra indices land m just

phosphatase(s) from a kinase network.

Also Ahik.i,. < Ahjk,

specify the relevant kinase(s) and

For example MAP kinase mediated

signaling could be modeled as activating a gene regulation network by this

mechanism.

In this model

competitive binding between activation of nearby binding

interactions could be modeled in the manner of an Ising model.

we just use a tree topology of states and partition functions here.

formulation we have omitted lateral interactions other than

sites. Such

For simplicity

Given such one-site and two-site partition functions, the

function for a promoter element in terms of its binding sites is:

overall partition

\blC=O )\_,'lc=l J

Here each binding site competes with at most one other one as determined by the

0/1-valued parameters Cb, Cbb,.

In this picture, silencers are just particular promoter elements with sufficiently

strong negative regulation of transcription to veto any other elements.



The Hierarchical Cooperative Activation (HCA) dynamics then become

dv i

Zi _ = [transcribing]i - Aivi

Jui ,
[transcribing]i = g(ui)- 1 + Ju i

U i = ,,
1+.Ioe 

and

1+ I(_,_<

b_alC=O_L'b yb.b" EalC=l _, b,b' ,]

with Z's as before:

Z_')=(I+ £ AbjKbjvj + £ Ab#KbjkV, V,)
t #

Zbb ) =(1 + __.abjKbjv j + _.abjkKbjkVjV k + _AvtKb.tV , + _.av,mKb.,,_vtv=)
j # tm tm

and likewise for inactive-module (hatted) Z's and K's. These partition functions

encode monomeric, homodimeric and heterodimeric protein-DNA binding using

the various A parameters.



The resulting HCA model (Figure 8) can describe promoter elements, silencer

regions, dimeric and competitive binding, and constitutive transcription factor

binding, among other mechanisms. The price is that there are considerably more

unknown parameters in the model than in the previous recurrent neural network

models - not exponentially many as in the general N-binding site partition

function, but enough to pose a challenge to model-fitting procedures and data

sets.

4 Conclusion

Gene regulation networks have been applied to model several episodes in the

development of Drosophila, successfully making contact with experimental

results. A variety of biological mechanisms including intercellular signaling can

now be included in such models. We proposed a new version of gene regulation

network models for use in describing experiments which involve promoter

substructure, such as transcription factor binding sites or promoter regulatory

elements.
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Figure 1. Sketch of recurrent analog neural network model for gene regulation

networks. A set of analog-valued units v are connected in a continuous-time,

recurrent circuit by a connection matrix T. Communication with circuits in other

cells may require additional connections, e.g. as formulated in [Mjolsness et al

'911.

Figure 2. Spatial pattern of gene expression in a Drosophila syncytial blastoderm

for two gap genes and one pair-rule gene. Immunofluorescent staining of nuclei

for Kruppel (green), giant (blue), and even-skipped (red). Overlap areas of Kr and

eve appear yellow, and overlaps of gt and eve appear purple. Image courtesy of

John Reinitz.

Figure 3. Data and model for gap gene circuit. Horizontal axes are nuclei along

lateral midline from anterior to posterior. Vertical axes are relative

concentrations. Left: data estimated from immunofluorescence images similar to

Figure 2 for pairs of gap genes. Right: output of a circuit model fit to expression

data using a nonlinear least squares criterion and simulated annealing

optimization. From [Reinitz et al. '92].

Figure 4. Predictions of the model as bicoid dosage is increased: location of

selected landmarks along A-P (horizontal) axis vs. number of bcd copies (vertical

axis). (a) Displacement of a landmark (anterior margin of the Kr domain)



expected if it were determined by reading off a fixed concentration value of

maternal Bicoid protein alone. (b-c) Smaller displacement of the same landmark

(anterior margin of the Kr domain) predicted by model. (A retrodiction.) (d)

Observed anomalously small displacement of a related landmark: the first eve

stripe, not available in the gap gene model but expected to be offset anteriorly

from the Kr landmark. Note anomalously high slope compared to a, but as in

b,c. (e) Prediction: return to the behavior of (a) if maternal hunchback is set equal

to zero. From [Reinitz et al. '92].

Figure 5. Drosophila eve stripe expression in model (right) and data (left).

Green: eve expression, red: kni expression. From [Reinitz and Sharp "95].

Courtesy J. Reinitz and D. H. Sharp.

Figure 6. A hypothesized minimal gene regulation circuit for lateral inhibition

mediated by Notch and Delta. Redrawn from [Heitzler et al '96, Figure 6]. Two

neighboring cells express Notch (N) and Delta (DI) at their surfaces. Notch

positively regulates transcription of genes of the Enhancer-of-split complex

E(spl)-C, which negatively regulate transcription of genes of the achaete-scute

complex (AS-C), which positively regulate transcription of Delta. Curved

boundaries are the ceil membranes between two neighboring cells. Related

circuit diagrams have been suggested elsewhere e.g. [Lewis '96].



Figure 7. Cluster resolution. A circuit "trained" to resolve simple proneural

cluster configurations into individual neuroblasts (or sensory organ precursor

cells) is tested on more complex and irregular configurations. In this case each

cluster was successfully resolved into a single neuroblast, but the large clusters

resolve more slowly. Times: t=l (top left), t=76 (top right), t=-106 (bottom left),

t=476 (bottom right). Similar to [Marnellos and Mjolsness '98a]; courtesy George

Marnellos.

Figure 8. Hierarchical Cooperative Activation (HCA) model for promoter

substructure within a gene "node" in a gene regulation network. Different layers

of sub-nodes have different forms of dynamics. This network could be used to

selectively expand some or all of the nodes in Figure 1, for example just the "eve"

gene in a network for the gap genes and eve.
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